Mathematics Advanced: Trigonometric Functions

Table of Contents

Radians

  • Radians are a fundamental component of year 11 and 12 Trigonometry
  • They are another unit for angle, like degrees
  • They can be calculated from degrees using the following formula:

\(\color{lightblue}{Radians = Degrees\cdot \frac{180}{\pi}}\)

\(\color{lightblue}{Degrees = Radians\cdot \frac{\pi}{180}}\)

Radians Mnemonic

  • Here’s an easy way to remember radians conversions:
\(sin(0)\)$sin(0^\circ)$$\frac{\sqrt{0}}{2}$$cos(90^\circ)$$cos\frac{\pi}{2}$
\(sin(\frac{\pi}{6})\)$sin(30^\circ)$$\frac{\sqrt{1}}{2}$$cos(60^\circ)$$cos\frac{\pi}{3}$
\(sin(\frac{\pi}{4})\)$sin(45^\circ)$$\frac{\sqrt{2}}{2}$$cos(45^\circ)$$cos\frac{\pi}{4}$
\(sin(\frac{\pi}{3})\)$sin(60^\circ)$$\frac{\sqrt{3}}{2}$$cos(30^\circ)$$cos\frac{\pi}{6}$
$sin(\frac{\pi}{2})$$sin(90^\circ)$$\frac{\sqrt{4}}{2}$$cos(0^\circ)$$cos(0)$
⬆ The number in the square root: 0, 1, 2, 3, 4

Sine and Cosine Rule

Sine Rule

\(\color{lightblue}{\frac{sin(A)}{a}=\frac{sin(B)}{b}=\frac{sin(C)}{c}}\)

A
A
B
B
C
C
a
a
b
b
c
c
Viewer does not support full SVG 1.1

Cosine Rule

Sides: \({\color{Red} a}{\color{Cyan} =\sqrt{{\color{Red} b}^2 +{\color{Red} c}^2 -2{\color{Red} bc}\cdot cos{\color{Green} A}}}\)

Angles: \({\color{Green} A}{\color{Cyan} =cos^{-1}\frac{{\color{Red} b}^2 + {\color{Red} c}^2 -{\color{Red} a}^2}{2{\color{Red} bc}}}\)

A
A
B
B
C
C
a
a
b
b
c
c
Viewer does not support full SVG 1.1

Pranav Sharma
Pranav Sharma
Site Owner

UNSW Student, site owner and developer.

Jackson Taylor
Jackson Taylor
Post Writer

2021 Graduate, UNSW Medicine first year.

Mastodon